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ABSTRACT

The effects of prenatal exposure to ethanol on the number of callosal axons were
examined. Pregnant Macaca nemestrina were treated with ethanol (1.8 g/kg b.wt.) 1 day per
week during the first 6 weeks (Et6) or full 24 weeks (Et24) of gestation. Control macaques
were intubated with an isocaloric amount of sucrose water (Ct). The mid-sagittal area of the
corpus callosum in 4- to 5-year-old offspring was examined in magnetic resonance (MR)
images and in fixed brains. The number of callosal axons was determined by using electron
microscopy. In both MR images and fixed brains of macaques treated with ethanol, the corpus
callosum was 26% larger than in the controls. The rostral portion was particularly affected by
ethanol; it was 55% larger in Et6- and Et24-treated macaques. Axonal size and myelin
thickness were unaffected by ethanol, but ethanol-treated macaques had more callosal axons
(13.7 % 107) than did controls (9.4 X 107 axons). The increase in the rostral corpus callosum
suggests that parietal and frontal cortices are particularly susceptible to ethanol. The altered
callosal connectivity may be a component of the structural abnormalities that underlie

executive processing problems associated with fetal alcohol syndrome. J. Comp. Neurol.
412:123-131,1999. o 1999 Wiley-Liss, Inc.
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prefrontal cortex

One common manifestation of fetal alcohol syndrome that are located at inappropriate sites (e.g., Clarren et al.,
) and models of FAS is microencephaly (e.g., Jones et 1978; Miller, 1986a, 1988a, 1993, 1997; Miller et al., 1990).
973; Randall et al., 1977; Clarren et al., 1978; Miller, The connectivity of cortical neurons is also affected by
a, 1996a). This reduced size is reflected in the num-  ethanol exposure. The scope of dendritic trees (Shapiro et
.of neurons in the neocortex (Miller and Potempa, al., 1984; Pentney et al., 1984; Fabregues et al., 1985;
90; Mooney, 1997). For example, the total numbers of Miller et al., 1990), the morphology of dendritic spines
Lrons in the primary somatosensory cortices of ethanol-
geited rats are 33% fewer than those in control rats. A
Milar reduction is evident in each cortical layer and in
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TABLE 1. Subjects!

Ethanol treatment

Subjects Controls (n = 6) 6 weeks (n = 5) 24 weeks (n = 4)

34/LP*
35/0H"
36/5B*
J7RS*
38/TU
40/DX*
48/KX
49/RG*
50/SA*
51/8C*
5USR*
55/SH*
56/81
S58EY*
60/KH*

Three principal groups of macaques were examined: those treated with ethanol onee
pal group q ]

per week for 6 weeks or for 24 weeks and controls (treated with sucrose and water once

per week). Subjects scanned for magnetic resonance images are noted by asterisks.

(Stoltenburg-Didinger and Spohr, 1983; Miller et al., 1990),
the density of cortical efferents (Miller and Al-Rabiai,
1994), and cortical synaptology (Al-Rabiai and Miller,
1989) are altered.

One of the major cortical pathways is the system of
interhemispheric connections, i.e., the callosal system.
The callosal system is responsible for giving the subject a
unified, seamless image of the sensory world. Various
reports show that a small number of children with severe
FAS exhibit agenesis or dysgenesis of the corpus callosum
(e.g., Clarren et al.,, 1978; Peifer et al., 1979; Pratt and
Doshi, 1984; Schaefer et al., 1991; Riley et al., 1995;
Swayze et al., 1997; Roebuck et al., 1998). It has been
estimated that 6.8% of children with FAS have callosal
defects as compared with 0.3% of the general population
and 2.3% of those afilicted with developmental disabilities.
In one sample, however, as many as 6 of 10 children with
FAS exhibited partial or full callosal agenesis (Swayze et
al., 1997).

Many data from animal studies support the clinical
findings of callosal defects. For example, immature, etha-
nol-treated rodents have smaller corpora callosa than do
controls (Wainwright and Gagnon, 1985; Wainwright and
Fritz, 1985; Zimmerberg and Scalzi, 1989). Interestingly,
these reductions are absent in mature animals suggesting
that the corpus callosum is vulnerable to an ethanol-
induced developmental delay. Recent evidence suggest
that this delay is followed by an overshoot and that mature
rats prenatally exposed to ethanol have more callosal
projection neurons than do controls (Miller, 1997). To
examine the apparent discrepancy between the human
and experimental animal findings, we examined the cor-
pora callosa of non-human primates that were treated
with ethanol prenatally.

MATERIALS AND METHODS
Subjects

The subjects were pigtail macaques (Macaca nemes-
trina). These were a subset of the animals used in previous
studies (Clarren and Astley, 1992; Clarren et al., 1992;
Astley et al., 1995). The macaques that had been exposed
for 3 weeks were not included in the present study because
only one survived to 4-5 years of age. Brain tissue was
obtained from 15 animals and magnetic resonance images
were taken from 12 of these macaques (Table 1).
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Care and feeding

The primates were clustered into three groups; ty
groups were exposed to ethanol prenatally and the th
group was a control group. Care and handling of {}{5
animals was in accordance with institutional guidelinis$
Details about the care and feeding of the macaques haya
been described (Clarren and Astley, 1992; Clarren et 2
1992).

The dams of the ethanol-treated groups received a sing ot
dose of ethanol (1.8 g/kg b.wt.; Et) once a week for § weeks
(Et6; i.e., the first quarter of gestation) or for 24 weakat
(Et24; i.e., throughout the pregnancy). The Et6-fed anis
mals were fed a sucrose solution (that was isocalori
isovolumetric to the ethanol dose) once per week for the
last 18 weeks of the pregnancy (i.e., from prenatal weeks
to 24). The dams of the control-treated macaques wera
given the sucrose solution (Ct) one day in each week of
gestation. 3

All pregnant macaques were fed chow and water ad
libitum. Nonhuman primates were consistently provided
their aliquots of the Et or Ct on the same day of the week:
for example, on gestational day (Q) 3, G10, G17. . . , Or on
G5, G12, G19. .. In the cadre of nine Et-treated macaques 3
used in the present study, the dosing was initiated on G3,
G5, G6, or G7. On the eve of a dosing day (at 5:00 pu), all &
chow and water was removed. In the morning, the preg
nant macaques were weighed and at 8:00 aM the animals.
were dosed. All pregnant animals were administered with :
the It or Ct over a 5-minute period by means of so[‘t}
nasogastric tubes. Chow and water was reintroduced at
5:00 pu1. !

Blood ethanol concentrations (BEC) were determined -
from each mother (Clarren et al., 1992). Samples of blood
(1.0 ml) were taken 40—400 minutes post-dosing and BEC
was measured with gas chromatography. Based on previ
ous studies (Clarren and Astley, 1992; Clarren et al., 1992), ¢
peak BEC was attained 100 minutes after the Et was™
administered. At this time, the Et6- and Et2d-treated
macaques had mean BECs of 231 + 18 mg/d] and 234 + 14
mg/dl, respectively. -

-

Magnetic resonance imaging

Animals lived in a complex community structure and
were routinely subjected to psychometric tests (the out
come of some of these tests have been published elsewhere; <&
Clarren et al., 1992). When the macaques were 3-5 years -
old, 12 of them (see Table 1) were sedated with an -
intramuscular injection of ketamine and xylazine (10 3
mg/kg bowt.). :

The procedures for obtaining the magnetic resonance -
(MR) images were the same as those described by Astley
and colleagues (1995). Briefly, the macaques were placed =
in a prone position and aligned with the Frankfort horizon-
tal plane perpendicular to the horizontal axis of a General -
Electric Signa whole body MR Scanner. The heads were
placed inside a knee coil to accommodate the small size of a -
macaque head. A standard cranial series was obtained
including T1l-weighted images in the mid-sagittal plane
(repetition time of 400-500 msec and echo time of 12 msec)
were taken. A 16-cm field of view was used with a slice
thickness of 3-4 mm. The images were analyzed with a
Bioquant Image Analysis System, R & M Biometrics,
Nashville, TN) to determine the cross-sectional area of the
corpus callosum.
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Tissue preparation

At the completion of the original study (Clarren et al.,
1992), the 15 surviving macaques (the 12 used in the MR
imaging study plus an additional one per treatment group;
see Table 1) were euthanized for neuroanatomic evalua-
tion. The macaques were 3.56-5.32 years old. Then, brain
samples were prepared for electron microscopy by stan-

{d protocols. Briefly, animals were anesthetized with
. .amine and xylazine and then killed by a three-stage
intracardial perfusion. Each macaque was perfused with
200-300 ml of 0.10 M phosphate buffer (pH 7.4) in saline
(PBS), 2-3 liter of 4.0% paraformaldehyde in 0.10 M
phosphate buffer, and finally with 1 liter of 10% sucrose in
PBS. The brain was removed from the cranium and stored
in buffered 30% sucrose.

The brainstem and cerebellum were removed and the
forebrain was hemisected. The wet weight of each whole
hrain was measured. The medial surface of the brain was

wed with the Bioquant System and the cross-sectional
.ea of the corpus callosum was determined.

Electron microscopy

Samples from three sites in the corpus callosum (from
the right hemisphere) were removed: the genu, body, and
splenium. These areas interconnect the prefrontal cortex,
primary and secondary somatosensory cortices, and pri-
mary and secondary visual cortices, respectively (LaMan-
tia and Rakic, 1990a). Each block measured 1 mm high by
" mm wide by 1 mm deep. The blocks were dehydrated,

nicated, and embedded in plastic. A series of ultrathin
sections was taken from each block. Every eighth to tenth
section was used in the analysis. These sections were cut
in a sagittal plane to generate cross-sections of the corpus
callosum.

A micrograph was taken of 5 non-overlapping fields
(15pm X 15nm) in each of five representative sections per
animal. Thus, a total of 25 micrographs was made for each
callosal site for each animal. Three measures describing
the composition of the corpus callosum in each field were

ken by using the Bioquant System. (1) The size of each

on in the field was measured. This constituted the area
within the outer aspect of the axolemma. (2) The thickness
of the myelin was determined. Three independent mea-
sures from each myelin profile were examined and the
mean was taken as the value for that axon. Each measure-
ment was made at a site where the laminations were
regular and parallel. (3) The number of axons included in
each field was counted. Only axonal profiles that were fully
within the defined area or intersected two of four sides of

the measuring box (10pym x 10pm) were included in the
lies.

Analysis

In all phases of the study, the investigators were blind to
the source of the sample. The mean values for the five
non-overlapping fields per section were calculated. In turn,
the mean (+ the standard error of the mean) for the five
sections from each callosal segment (i.e., the genu, body,
and splenium) was determined. The latter mean was
considered representative of the callosal segment that was
nsed in the statistical analyses. Analyses of variance were

sed to assess differences among locations within the
corpus callosum by prenatal treatment group. In cases
where significant differences were detected, post-hoc Stu-
dent-Newman-Keuls tests were performed.

TABLE 2. Effect of the Duration of Ethanol Exposure on Body
and Brain Weight!

Parameter Ctin = 6) Et6 (n = 5) Et24 (n = 4)
Age (yr) 4.80 = 0.18 4.95 = 0.09 431 = 0.32
Body weight (kg) 53 =08 6.9 = 0.5 52+ 06
Brain weight (g) 85.2 = 8.7 88.3 = 4.0 B87.6 = 4.8

"The age, body weight, and brain weight at sacrifice are given for macaques in the five
treatment groups. The offspring of macaques were fed a sucrose control (Ct), fed ethanol
once per week for 6 weeks (Et6), or fed ethanol once a week for 24 weeks (Et24). Each
value is a mean (= the standard error of the mean).

RESULTS
Body and brain size

Data on the age, body weight, and brain weight of the
macaques at sacrifice are provided in Table 2. Mean body
weight was significantly (P < 0.05) greater in the Et6-
treated animals than in the Ct- and Et24-treated ma-
caques. The brain weight was unaffected by the prenatal
exposure to ethanol.

Size of the corpus callosum

Magnetic resonance images of the living brain. The
corpus callosum was measured in mid-sagittal MR images
of 12 macaques (Fig. 1; Table 1). The mid-sagittal area of
the corpus callosum was significantly (Fy,, = 6.78; P <
0.019) larger in the animals prenatally exposed to ethanol
(Table 3). Student-Newman-Keuls tests show that the
corpora callosa of both Et6- and Et24-treated macaques
were significantly (P < 0.05) larger than those of the
Ct-treated macaques. Differences between the two Et-
treated groups were not statistically significant.

Planimetry of the corpus callosum in fixed brains.
The corpus callosum was measured on the medial surface
of each hemisphere of the 15 fixed brains (Fig. 2). No
significant differences between the sizes of the sectioned
corpora callosa in each hemisphere (i.e., in comparisons
between the right and left sides from the same brain) were
detected in any treatment group (Table 3). Although this
was expected, the small differences (less than 2.0%) indi-
cate that experimental error was inconsequential. The
data from the two hemispheres were pooled and grand
means (designated as “total” in Table 3) were generated
based on animal units. An analysis of variance of these
pooled data showed that the corpus callosum was larger in
the Et6- (23.6%) and Et24-treated (22.3%) primates than
in the controls (Fy ;4 = 5.25; P < 0.023).

The ethanol-induced increase was not even throughout
the rostrocaudal extent of the corpus callosum. The corpus
callosum was divided into two portions; the border be-
tween the two portions was at the level of the rostral
thalamus where the body of the corpus callosum and the
body of the fornix diverged. The size of the caudal segment
was similar in Ct-, Et6-, and Et24-treated macaques. On
the other hand, the rostral segment was significantly (P <
0.05) larger in the Et6- (62.6%) and Et-treated (50.3%)
macaques than in the controls.

The corpus callosum in the fixed brains was smaller
than it was in the MR images. It is interesting to note, that
the difference was consistent among all of the treatment
groups; about 8% (i.e., fixation ratios of about 0.92; see
Table 3). The implications from these data were (1) that
the fixation process caused a small amount of shrinkage
independent of ethanol treatment and (2) that prenatal
treatment did not affect the fixation ratio.

S
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Fig. 1. MR images of ethanol- and control-treated macaques.
These MR scans of the mid-sagittal planes of the brains of Ct- (top),
Et6- (middle), and Et24-treated (bottom) macaques were taken within
0.5 years of the time of death. CE, cerebellum; CG, cingulate gyrus; b,
body of the corpus callosum; f, fornix; g, genu of the corpus callosum;
ME, medulla; MI, midbrain; PO, pons; s, splenium of the corpus
callosum; SC, spinal cord; TH, thalamus. Scale bars = 1.0 cm.

Composition of the corpus callosum

The cross-sectional area of callosal axons, the thickness
of the myelin, and the axonal density were measured in
electron micrographs of the corpus callosum (Fig. 3). Each
feature was examined at three locations, the genu, body,
and splenium of the corpus callosum. Regardless of the
treatment group and callosal location, only 10-15% of the
callosal axons were non-myelinated.

In the control macaques, axonal size varied among the
three locations. Axons in the genu were at best half the size

M.W. MILLER ET AT

TABLE 3. Size of the Corpus Callosum in Magnetic Resonance [
and Fixed Brains!

Ct(n = 6) Et6 (n = 5)

MR images
Right hemisphere (<105 pm?) 86.2 = 5.5 112 = 4*
Rostral segment (% 10% pm?) 374 +33 60.8 = 6.3*
Caudal segment (% 10% pm?) 48.8 = 3.9 51245
Fixed brains

Right hemisphere (% 10% pm?) 81.1+23 102 * 6*
Rostral segment (% 10% pm?) 35218 54.9 = 3.6
Caudal segment (x 105 pm?) 45.8 = 1.1 474 =25

Left hemisphere (2105 pm?) 823 *38 100 = 4*

Total (X105 pm?) 81.7+35 101 = 5*

Fixation ratio 0.941 + 0.061 0.911 = 0.054

'The rostral and caudal segments were demarcated by the junction/separation of
body of the corpus callosum and the body of the fornix. The total size of the co
callosum was compiled from the pooled data for the size of the corpus callosum in
hemisphere. The fixation ratio for the corpus callosum in the right hemisphere
calculated as the size of the corpus callosum in the fixed brains to the callosal size in thet
magnetic resonance images. Ct, sucrose control; Etb, fed ethanol once per week for §
weeks; Et24, fed ethanol once per week for 24 weeks,

*Asterisks denote statistically significant (7 < 0.05) differences relative to the
the Ct-treated macaques.

sizein
o .

of those at the other two locations (Fig. 4). This differencs
was statistically significant (Fyy = 36.2; P < 0.001). A
similar pattern was evident in the Et6- and Et24-treated
macaques. :
The mean thickness of the myelin sheaths paralleled the
mean size of the axons (Fig. 5). Thus, the axons in the geni
had the thinnest myelin and those in the splenium the
thickest (I3, = 16.1; P < 0.001). At a particular callosal:
site, no differences among the Ct-, Et6-, and Et24-treated’
macaques were detected. >
The mean axonal density was calculated as the quotient’
of the mean number of axons counted in a 100 pm? square.’
An analysis of variance (Fp4 = 64.4; P < 0.001) showed
that density was affected by both the treatment group and
the location in the corpus callosum. Regardless of the
treatment group, the density was greatest in the genu and;
lowest in the splenium (Fig. 6). The only site where the
axonal density was affected by an ethanol treatment was
in the body. Here the density was significantly (P < 0.05)
higher in the Et6- and Et24-treated macaques than in the
controls. ‘
An estimate of the total number of axons was calculated
as the product of the size of the corpus callosum and the
mean axonal density (Fig. 7). The latter value was deter-
mined as the mean of the axonal density at the three sites:
Accordingly, the Et6- and Et24-treated macaques had
significantly more (48.8% and 41.2%, respectively) axons
than did the controls (Fy ;5 = 14.4; P < 0.001). No differ-
ences between the two ethanol treatment groups were
observed; that is, the duration of the ethanol exposure had»f
no effect. b

DISCUSSION
Size and axonal content of the corpus
callosum in normal non-human primates

trina is 81.7 mm?. This is similar to the size of the corpus &
callosum in the M. mulatta (76.4 mm?2d Rakic, 1990a). In
both the M. nemestrina and the rhesus monkey, axonal 2
density varies with location; the density in the genu isi&
about twice that in the body and the splenium. On the &
other hand, regardless of location, the present study shows &
that the density of axons in the corpus callosum of the M. ﬁ
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Fig. 2. Corpora callosa of macaques prenatally exposed to ethanol.
The medial aspects of the same brains as those depicted in Figure 1 are
shown; Ct- (top), Et6- (middle), and Et24-treated (bottom) macaques.
The dotted line through the body of the corpus callosum identifies the
Pborder between the rostral and caudal segments. ac, anterior commis-

re; b, body of the corpus callosum; CG, cingulate gyrus; g, genu of the
vorpus callosum; f, fornix; s, splenium of the corpus callosum; TH,
thalamus. Scale bars = 1.0 cm.

nemestrina (1.18 axons/pm? is 40-50% greater than in the
rhesus monkey (0.766 axons/pm? LaMantia and Rakic,
1990a). The net result is that the estimated number of
callosal axons in the M. nemestrina (94.2 X 10° axons) is
68.2% higher than in the M. mulatta (56.0 X 10° axons;
LaMantia and Rakic, 1990a). It must be kept in mind that
e weights of the mature brains of the two macaque
species are similar (¢f. the present results and Holloway
and Heilbroner, 1992). The inter-species differences be-

Fig. 3.

Ultrastructure of the genu of the corpus callosum. Myelin-
ated axons (ax) are the most common feature of the corpus callosum in
Ct- (top), Et6- (middle), and Et24-treated (bottom) macaques. m,
myelin. Scale bars = 2.0 pm.
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Fig.4. Axonal size. The mean cross-sectional area of axons in a 100
nm? box (= the standard error of the mean) was plotted for the five
treatment groups. A separate mean was calculated for axons in the
genu (left), body (middle), and splenium (right) of the corpus callosum.
At each callosal site, no differences among treatment groups were
detected.
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Fig. 5. Myelin thickness. At each callosal site, the mean thickness
of the myelin sheath was not significantly different in the Ct-, Et6-,

and Et24-treated macaques. T-bars denote the standard errors of the
means,

tween the M. nemestrina and the M. mulatta in callosal
size are small. After all, despite no change in brain weight,
the size of the corpus callosum in the M. mulatta is 42.7%
larger than cross-sectional area of the corpus callosum in
another macaque, the M. fascicularis (Holloway and Hei-
Ibroner, 1992).

Species differences in-ethanol-induced
changes in callosal size

Exposure to moderate amounts of ethanol, once per
week during gestation for as little as 6 weeks, increases
the size of the corpus callosum in the macaque. This
ethanol-induced increase in eallosal size results from an

AXONAL DENSITY (#fum?)
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Fig. 6.  Axonal density. The packing density of axons varied
the location; the density was greatest rostrally and lowest cauda
Prenatal treatment only had a significant effect (P < 0.05; noted by,
asterisks) on axonal density in the body of the corpus callosum. The; i
the density of callosal axons was greater in all animals treated with
the Et, regardless of the presentation (e.g., Et6 or Et24). &

=]

CALLOSAL AXONS (# x 107)
w

Ct  E5  Ewe¢
TREATMENT GROUP

Fig. 7. Total number of axons in the corpus callosum. Regardless o
whether the Et was provided over 6 weeks (Et6) or 24 weeks (Et24), 4
the estimated total number of callosal axons was greater in t.ha_'_y ¥
Et-treated macaques than it was for controls. Statistically significant
differences (P < 0.05) are noted by asterisks.

increase in the number of callosal axons. Furthermore, the %
increase occurs regardless of how long the fetus is exposed =
to ethanol (i.e., 6 or 24 weeks). j
In addition to the present study, data from rat investiga
tions also show that prenatal exposure to ethanol in-3
creases the number of callosal projection neurons (Miller, -
1997). Such findings are at variance with the data from
various studies of children with severe brain alterations in
FAS (e.g., Clarren et al., 1978; Peifer et al., 1979: Pratt and
Doshi, 1984; Schaefer et al., 1991; Riley et al., 1995;
Swayze et al., 1997). These clinical studies show that such
children with severe brain abnormalities have a higher -
incidence of callosal agenesis or dysgenesis than that for -
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8. Effects of blood ethanol concentration on callosal size. The

un the callosal size were plotted against peak blood ethanol

concentration for each animal. The solid line depicts the second order

curve that best fits the data (P < 0.05) and the dashed line describes
the mean callosal size in the controls.

the general population. Such clinical data, however, must
be interpreted with caution. There is the great risk that by
focusing on children with FAS who have the more severe or
obvious brain disruptions, the data sample may not be
ceneralizable to all children with fetal alcohol damage.
* clinical studied are biased in that they present data
::a severely affected children. The monkeys in the pre-
sent study evidently are less severely affected because
they are not microencephalic. The results of a recent MR
imaging study support this contention (Streissguth and
Bookstein, personal communication). In this study, chil-
dren with a wide range in severity of CNS dysfunction in
FAS and alcohol-related neurodevelopmental disorder were
examined. The range of callosal defects varies widely; in
fact, some of the children exhibit enlarged corpora callosa.
One key factor determining the effect of ethanol on
“osal size may be the peak BEC. Ethanol-treated ma-
.-jues and rodents with larger corpora callosa (Miller,
1997; present study) had BECs of <250 mg/dl. In contrast,
the mothers of rodents and people exhibiting callosal
damage likely had BECs of >250 mg/dl. Interestingly, a
curious relationship emerges when the data for the callo-
sal size are plotted against BEC (Fig. 8). Exposure to
moderate BEC results in a modest increase in callosal size.
The maximal effect is evident with BEC between 205 and
240 mg/dl. At BEC of >250 mg/dl, callosal size falls with
BEC. These data should be interpreted with caution,
" wever, because all animals in the present study were
veated with the same amount of ethanol and peak BEC
can vary within an individual animal by 25% or more
(Bonthius and West, 1990). Nevertheless, the data are
compelling and it is important to note that dose-dependent
effects for dopamine neurochemistry in macaques (Astley
et al., 1995) and for hippocampal morphology in rats
(Miller, 1995) have also been described.

Critical windows of ethanol exposure

The timing of ethanol exposure may have profound
" ratogenic effects. Sulik has shown that mice treated with
cithanol on G7 exhibit the full array of craniofacial malfor-
mations that are characteristic of FAS (Sulik, 1984). The
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brains of these animals also are malformed, particularly
midline structures such as the septal nuclei and the corpus
callosum (e.g., Sulik and Johnston, 1982; Schambra ot al.,
1989). The BEC of these mice was extremely high, 500-600
mg/dl. Rats exposed to ethanol through much of the
prenatal period (including G8 and G9; the days when
gastrulation occurs in the rat) also have callosal damage
(Zimmerberg and Scalzi, 1989; Miller, 1997).

It is difficult to draw parallels between the timing of rat
and macaque development. If we use the time of gastrula-
tion and the timing of cortical neuronogenesis as bases of
comparisons, however, some meaningful conclusions can
be drawn. Gastrulation occurs on G8 or G9 in the rat and
on G19 or G20 in the macaque. Cortical neurons in
macaques are generated between G45 and G102 (Rakic,
1974,1978) and between G12 and G21 in the rat (Bruckner
et al., 1976; Miller, 1988a,b). Thus, based on studies with
mice (Sulik, 1984), it can be predicted that macaques
exposed to ethanol on G19 or G20, would experience
craniofacial and midline brain damage. Data show that
the macaques exposed to ethanol on G19 or G20 do, in fact,
exhibit craniofacial anomalies (Astley et al., 1999).

The data for the macaque and the rodent are not wholly
consistent. The lack of a difference between the Et6- and
Et24-treated macaques suggests that brain alterations
can result from episodic ethanol exposure before embry-
onicimplantation, but before the period of cortical neurono-
genesis. In contrast, cortical damage in the rat may not be
caused by such early exposure. For example, the prolifera-
tion of cortical progenitors in the rat is unaffected by
exposure to ethanol between G6 and G9, whereas exposure
between G12 and G15 or between G18 and G21 signifi-
cantly alters cell proliferation (Miller, 1996b).

Regional specific effects of ethanol

The rostral portion of the macaque corpus callosum is
the most affected by prenatal exposure to ethanol. This
segment interconnects the frontoparietal lobes in the two
hemispheres. In the rat we know that both motor (frontal)
and somatosensory (parietal) cortices are profoundly af-
fected by ethanol (e.g., Miller, 1987, 1997; Miller and
Potempa, 1990). Although no comparable data are avail-
able for the non-human primate, there is reason to suspect
that somatosensory cortex in the macaque brain is also
targeted by prenatal ethanol treatment.

Evidence implicating the frontal lobe is interesting in
light of data from children with FAS. The size of frontal
cortex is disproportionately altered in children with FAS
(S.N. Mattson, personal communication). By itself, this
reduction may be meaningless, but such children also
exhibit abnormalities in executive functions (Koditu-
wakku et al., 1995; Kopera-Frye et al., 1996) and executive
functions have been attributed to prefrontal processing
(e.g., Eslinger et al., 1992; Bechara et al., 1996, 1998).
Thus, the abnormal structure of frontal cortex and like-
wise the altered numbers of axons in the rostral segment of

the corpus callosum may underlie prefrontal dysfunction
of executive activities.

Ethanol-induced overgrowth of axons
and dendrites

Studies in the rodent show that early exposure to
ethanol can promote the growth of axons. Prenatal expo-
sure to ethanol induces an increase (1) in the number of
callosal projection neurons in the somatosensory cortex of
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the rat (Miller, 1997), (2) in the number of corticospinal
projection neurons in somatosensory and motor cortices
(Miller, 1987), and (3) in the number of their descending
axons in the lower pyramidal tract (Miller and Al-Rabiai,
1994). Recent evidence shows that ethanol treatment
promotes axonal growth by cultured hippocampal neurons
(Clamp and Lindsley, 1998).

Ethanol-induced overgrowth is not restricted to axonal
systems. Prenatal exposure to ethanol also can induce the
postnatal hypergrowth of dendrites. Corticospinal projec-
tion neurons in somatosensory cortex of Et-treated rats
and cerebellar Purkinje neurons have more complex den-
dritic trees (i.e., more branches) and longer dendrites than
do neurons in controls (Pentney et al., 1984; Miller et al.,
1990). These data were based on rats that were treated
with ethanol from G6 to G21. Similar data were garnered
from mice exposed to ethanol only on G10 and G11 (R.F.
Mervis, personal communication), that is, early in the
period of cortical neuronogenesis (Angevine and Sidman,
1961; Bruckner et al., 1976; Gardette et al., 1982; Miller,
1988a,b).

Callosal (e.g., O'Leary et al.,, 1981; Ivy and Killackey,
1982; LaMantia and Rakic, 1990b) and corticospinal axons
(e.g., Stanfield et al., 1982; O’Leary and Stanfield, 1986)
and the dendrites of cortical pyramidal neurons (Miller,
1981, 1986b, 1988b) undergo considerable pruning during
early development. We hypothesize that ethanol reduces
the pruning process. Various data support this hypothesis.
In the developing macaque, the number of callosal axons
reaches a maximum of 3.5-fold more than that in the adult
(LaMantia and Rakic, 1990b). Et-treated macaques have
only 0.45-fold more callosal axons than do controls. This is
consistent with the notion that the pruning of callosal
axons that normally occurs in all developing macaques is
partially blocked by prenatal exposure to ethanol. Further
support comes from a study of pyramidal tract axons in
developing rats. The number of these axons falls during
early postnatal development, but the fall is not as precipi-
tous or profound in Et-treated rats as it is in controls
(Miller and Al-Rabiai, unpublished results). The increases
in axonal and dendritic fields could be affected (1) by
blocking the action of a pruning regulator (e.g., Sato et al.,
1994; Frisen et al., 1998) or (2) by facilitating the action of
an agent(s) that promotes neuritic growth such as a
neurotrophin. Interestingly, ethanol potentiates neuro-
trophin activity in vitro so that the ethanol-treated cul-
tured neurons elaborate more neurites (Messing et al.,
1993; Zou et al., 1993, 1995).

In summary, macaques exposed to moderately high
levels of ethanol exhibit increases in the sizes of their
corpora callosa and in the numbers of callosal axons. These
alterations likely result from interference with substances
that regulate normal neuronal growth, e.g., neurotroph-
ins. It is generally assumed that cognitive deficits result
from reductions in axonal and/or dendritic fields, however,
evidence that ethanol-induced cognitive deficits are caused
by an overabundance of axons and dendrites is building,.
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